At t=0 s:
- Angular Displacement: θ=5 radians
- Angular Speed: ω=10 rad/s
- Angular Acceleration: α=4 rad/s²
At t=3 s:
- Angular Displacement: θ=53 radians
- Angular Speed: ω=22 rad/s
- Angular Acceleration: α=4 rad/s²
Given the equation for the angular displacement θ(t) as a function of time t:
θ(t)=5+10t+2t2
where θ is in radians and t is in seconds. We need to determine the angular displacement, angular speed, and angular acceleration at times t=0 s and t=3.00 s.
1. Angular Displacement, θ(t)
This is given directly by the equation :
θ(t)=5+10t+2t2
2. Angular Speed, ω(t)
The angular speed is the first derivative of the angular displacement with respect to time:
ω(t)=dtdθ(t)
Let's differentiate the given equation:
ω(t)=dtd(5+10t+2t2)=0+10+4t
So,
ω(t)=10+4t(in radians per second)
3. Angular Acceleration, α(t)
The angular acceleration is the second derivative of the angular displacement with respect to time, or the first derivative of the angular speed with respect to time:
α(t)=dtdω(t)
Let's differentiate ω(t) :
α(t)=dtd(10+4t)=0+4=4(in radians per second squared)
So the angular acceleration α(t) is constant and equal to 4 radians per second squared.
Now, let's calculate the values at t=0 s and t=3 s.
(a) At t=0 s:
- Angular Displacement θ(0):
θ(0)=5+10(0)+2(0)2=5 radians
- Angular Speed ω(0):
ω(0)=10+4(0)=10 radians per second
- Angular Acceleration α(0):
α(0)=4 radians per second squared
(b) At t=3 s:
- Angular Displacement θ(3) :
θ(3)=5+10(3)+2(3)2=5+30+18=53 radians
- Angular Speed ω(3.00) :
ω(3)=10+4(3)=10+12=22 radians per second
- Angular Acceleration α(3):
α(3)=4 radians per second squared
Summary:
At t=0 s:
- Angular Displacement: θ=5 radians
- Angular Speed: ω=10 rad/s
- Angular Acceleration: α=4 rad/s²
At t=3 s:
- Angular Displacement: θ=53 radians
- Angular Speed: ω=22 rad/s
- Angular Acceleration: α=4 rad/s²