user
Show that (logy basex)(logx base z)(logz base y)=1
alphonsio

We need to show that:

(logxy)(logzx)(logyz)=1(\log_x y) (\log_z x) (\log_y z) = 1

Step 1: Expressing Logarithms in Terms of Natural Logarithms

Using the change of base formula:

logab=lnblna\log_a b = \frac{\ln b}{\ln a}

we rewrite each term:

logxy=lnylnx,logzx=lnxlnz,logyz=lnzlny\log_x y = \frac{\ln y}{\ln x}, \quad \log_z x = \frac{\ln x}{\ln z}, \quad \log_y z = \frac{\ln z}{\ln y}

Step 2: Multiply the Three Expressions

(lnylnx)×(lnxlnz)×(lnzlny)\left( \frac{\ln y}{\ln x} \right) \times \left( \frac{\ln x}{\ln z} \right) \times \left( \frac{\ln z}{\ln y} \right)

Step 3: Simplification

Since the terms in the numerators and denominators cancel out:

lnylnx×lnxlnz×lnzlny=1\frac{\ln y}{\ln x} \times \frac{\ln x}{\ln z} \times \frac{\ln z}{\ln y} = 1

Thus, we have:

(logxy)(logzx)(logyz)=1(\log_x y)(\log_z x)(\log_y z) = 1

Conclusion

The given logarithmic identity is proven to be true.