user
Prove that ∫ [0 pi/4] ln(cos(x)) dx = ∫ [0 pi/4] ln(cos(pi/4-x)) dx
alphonsio

To prove that

0π/4ln(cos(x))dx=0π/4ln(cos(π/4x))dx,\int_{0}^{\pi/4} \ln(\cos(x)) \, dx = \int_{0}^{\pi/4} \ln(\cos(\pi/4 - x)) \, dx,

let's use the substitution method and symmetry properties of trigonometric functions.


Step 1: Substitution in the second integral

Let's define u=π4xu = \frac{\pi}{4} - x. Then,
du=dxdu = -dx

When

  • x=0    u=π4x = 0 \implies u = \frac{\pi}{4},
  • x=π4    u=0x = \frac{\pi}{4} \implies u = 0,

this reverses the limits of integration. The second integral becomes:
0π/4ln(cos(π/4x))dx=π/40ln(cos(u))(du)\int_{0}^{\pi/4} \ln(\cos(\pi/4 - x)) \, dx = \int_{\pi/4}^{0} \ln(\cos(u)) \, (-du)

Reversing the limits to restore the order of integration introduces a negative sign:
π/40ln(cos(u))(du)=π/40ln(cos(u))du=0π/4ln(cos(u))du\int_{\pi/4}^{0} \ln(\cos(u)) \, (-du) = -\int_{\pi/4}^{0} \ln(\cos(u)) \, du = \int_{0}^{\pi/4} \ln(\cos(u)) \, du

then:

0π/4ln(cos(π/4x))dx=0π/4ln(cos(u))du\int_{0}^{\pi/4} \ln(\cos(\pi/4 - x)) \, dx = \int_{0}^{\pi/4} \ln(\cos(u)) \, du


Step 2: Rename the variable

Since the variable of integration is a dummy variable, we can replace uu with xx in the final expression:
0π/4ln(cos(π/4x))dx=0π/4ln(cos(x))dx\int_{0}^{\pi/4} \ln(\cos(\pi/4 - x)) \, dx = \int_{0}^{\pi/4} \ln(\cos(x)) \, dx


Conclusion

We have shown that:
0π/4ln(cos(x))dx=0π/4ln(cos(π/4x))dx\int_{0}^{\pi/4} \ln(\cos(x)) \, dx = \int_{0}^{\pi/4} \ln(\cos(\pi/4 - x)) \, dx