user
What is the formula to convert kilometers per hour to radians per second ?
alphonsio

The formula to convert kilometers per hour to radians per second is given by:

ω(rad.s1)=v(km.h1)3.6×r\omega_{(rad.s^{-1})} = \dfrac { \text{v}_{ (km.h^{-1}) }}{3.6 \times r }

Where :

  • ω(rad.s1)\omega_{(rad.s^{-1})} is the angular velocity expressed in radians per seconde (rad/s)
  • v(km.h1)\text{v}_{ (km.h^{-1}) } the linear velocity expressed in kilometers per hour (km/h)
  • rr is the radius expressed in meters (m)

The following explains how to convert speed from kilometers per hour ( km/h\text{km/h} ) to radians per second ( rad/s\text{rad/s} ) :

Formula:

ω(rad/s)=v(km/h)×10003600×r\omega \, (\text{rad/s}) = \frac{\text{v} \, (\text{km/h}) \times 1000}{3600 \times r}

Where:

  • v\text{v} is the linear speed in km/h\text{km/h},
  • rr is the radius of the circular path in meters.

Explanation:

  1. Convert km/h\text{km/h} to m/s\text{m/s} :
    Since 1km/h=10003600m/s=5/18m/s1 \, \text{km/h} = \frac{1000}{3600} \, \text{m/s} = 5/18 \, \text{m/s} , multiply the speed by 518\frac{5}{18} .

  2. Find angular speed ( rad/s\text{rad/s} ):
    The relationship between linear velocity ( vv ) and angular velocity ( ω\omega ) is:
    ω=vr\omega = \frac{v}{r}
    where rr is the radius of the circular motion in meters.


Example:

Suppose a vehicle is moving at 72km/h72 \, \text{km/h} and the radius of its circular path is 10m10 \, \text{m}.

  1. Convert 72km/h72 \, \text{km/h} to m/s\text{m/s}:
    v=72×518=20m/sv = 72 \times \frac{5}{18} = 20 \, \text{m/s}

  2. Calculate ω\omega:
    ω=vr=2010=2rad/s\omega = \frac{v}{r} = \frac{20}{10} = 2 \, \text{rad/s}


Shortcut:

To directly convert km/h\text{km/h} to rad/s\text{rad/s}, use:
ω(rad/s)=km/h×518×r\omega (\text{rad/s}) = \frac{\text{km/h} \times 5}{18 \times r}

This approach keeps the conversion steps compact.