Use the following to create an empty dataframe with a given size (nRows x nCols
) in Python / Pandas:
import pandas as pd
df = pd.DataFrame(index=range(nRows),columns=range(nCols))
In Python, you can create an empty DataFrame with a specified number of rows and columns using the pandas
library. Here’s how you can do it:
Import the pandas library:
First, make sure to import the pandas library. If you don’t have it installed, you can install it using pip install pandas
.
Create the DataFrame:
Use pd.DataFrame
to create an empty DataFrame with the desired dimensions.
Here’s a simple example:
import pandas as pd
# Specify the number of rows and columns
num_rows = 5
num_columns = 3
# Create an empty DataFrame with the specified size
# We initialize it with NaN values using numpy
df = pd.DataFrame(index=range(num_rows), columns=range(num_columns))
# Optionally, you can replace NaN values with a specific value, e.g., 0 or an empty string
df.fillna('', inplace=True)
print(df)
index=range(num_rows)
: This specifies the range of indices (rows) for the DataFrame.columns=range(num_columns)
: This specifies the range of column labels for the DataFrame.df.fillna('', inplace=True)
: This step is optional. It fills all NaN
values with an empty string or any value you prefer.The output will be an empty DataFrame with 5 rows and 3 columns filled with empty strings:
0 1 2
0
1
2
3
4
You can also customize the column names if needed:
import pandas as pd
# Specify the number of rows and columns
num_rows = 5
num_columns = 3
# Specify custom column names
column_names = ['A', 'B', 'C']
# Create an empty DataFrame with the specified size and custom column names
df = pd.DataFrame(index=range(num_rows), columns=column_names)
# Optionally, fill NaN values with a specific value, e.g., 0 or an empty string
df.fillna('', inplace=True)
print(df)
A B C
0
1
2
3
4
By following these steps, you can easily create an empty DataFrame with a specified size in Python using pandas.