user
A flywheel of mass moment of inertia equal to 53 kg.m^2 is rotating at 300 rpm. In order to accelerate it to 500 rpm in 15 seconds, what is the angular acceleration required? The frictional resistance is 16 N.m. What is the total torque required to achieve this acceleration? If the friction is constant and the applied torque is removed, how long will it take to stop spinning, from 500 rpm? How many revolutions will it do while slowing down?
alphonsio
  • The angular acceleration required is:

α=4π91.40rad/s2\alpha = \frac{4\pi}{9} \approx 1.40\, \text{rad/s}^2

  • The total torque required for the acceleration is:

τ=212π9+1690.00Nm\tau = \frac{212\pi}{9} + 16 \approx 90.00 \, \text{N} \cdot \text{m}

  • The time to stop from 500 rpm is:

tstop=50π3×0.3018173.44secondst_{\text{stop}} = \dfrac{50\pi}{3 \times 0.3018} \approx 173.44 \, \text{seconds}

  • The number of revolutions from 500 rpm to 0 rpm is:

Revolutions=4542.012π722.88revolutions\text{Revolutions} = \frac{4542.01}{2\pi} \approx 722.88 \text{revolutions}


To solve this problem, we'll break it down into several steps:

Step 1: Convert RPM to Radians per Second

First, we need to convert the initial ( ωi\omega_i ) and final ( ωf\omega_f ) angular velocities from revolutions per minute (RPM) to radians per second:

ωi=300rpm=300×2π60rad/s=10πrad/s\omega_i = 300 \, \text{rpm} = 300 \times \frac{2\pi}{60} \, \text{rad/s} = 10\pi \, \text{rad/s}

ωf=500rpm=500×2π60rad/s=50π3rad/s\omega_f = 500 \, \text{rpm} = 500 \times \frac{2\pi}{60} \, \text{rad/s} = \frac{50\pi}{3} \, \text{rad/s}

Step 2: Calculate Angular Acceleration

The angular acceleration ( α\alpha ) required to increase the speed from ωi\omega_i to ωf\omega_f in 15 seconds can be determined using the formula:

α=ωfωit\alpha = \frac{\omega_f - \omega_i}{t}

Substituting the values:

α=50π310π15=50π30π315=20π45rad/s2=4π9rad/s2\alpha = \frac{\frac{50\pi}{3} - 10\pi}{15} = \frac{\frac{50\pi - 30\pi}{3}}{15} = \frac{20\pi}{45} \, \text{rad/s}^2 = \frac{4\pi}{9} \, \text{rad/s}^2

Step 3: Calculate the Total Torque Required

The torque ( τ\tau ) required to achieve the desired angular acceleration is given by:

τ=Iα+τfriction\tau = I \cdot \alpha + \tau_{\text{friction}}

Where:

  • I=53kgm2I = 53 \, \text{kg} \cdot \text{m}^2 is the moment of inertia.
  • τfriction=16Nm\tau_{\text{friction}} = 16 \, \text{N} \cdot \text{m} is the frictional resistance.

Substituting in the values:

τ=534π9+16\tau = 53 \cdot \frac{4\pi}{9} + 16

Calculate:

τ=212π9+1674.00+16=90.00Nm\tau = \frac{212\pi}{9} + 16 \approx 74.00 + 16 = 90.00 \, \text{N} \cdot \text{m}

Step 4: Calculate Time to Stop Spinning

If the friction is constant and the applied torque is removed, the deceleration will be due to the frictional torque alone. Thus, the angular deceleration ( αf\alpha_f ) is:

αf=τfrictionI=1653rad/s20.3018rad/s2\alpha_f = \frac{\tau_{\text{friction}}}{I} = \frac{16}{53} \, \text{rad/s}^2 \approx 0.3018 \, \text{rad/s}^2

To find the time ( tstopt_{\text{stop}} ) it takes to stop from 500 rpm, use the equation:

ωf=ωiαftstop\omega_f = \omega_i - \alpha_f t_{\text{stop}}

tstop=ωiωfαft_{\text{stop}} = \dfrac{\omega_i - \omega_f}{\alpha_f}

Here, ωf=0\omega_f = 0:

tstop=ωiαft_{\text{stop}} = \dfrac{\omega_i}{\alpha_f}

tstop=50π3×0.3018173.44secondst_{\text{stop}} = \dfrac{50\pi}{3 \times 0.3018} \approx 173.44 \, \text{seconds}

Step 5: Calculate the Number of Revolutions While Slowing Down

During deceleration, the angular deceleration has been calculated as:

αf0.3018rad/s2\alpha_f \approx 0.3018 \, \text{rad/s}^2

By integrating the acceleration, and considering the initial velocity, the angular velocity is given by:

ω(t)=αft+wf0.3018t+50π3\omega(t) = -\alpha_f t+w_f \approx -0.3018t + \frac{50\pi}{3}

By integrating the angular velocity, we can calculate the angular displacement:

θ(t)=αf2t2+wft120.3018t2+50π3t\theta(t) = -\frac{\alpha_f}{2} t^2 + w_ft \approx -\frac{1}{2}0.3018t^2 + \frac{50\pi}{3}t

At the end of the motion ( t=tstopt =t_{stop} ) the angular displacement is:

θ=ωftstopαf2tstop2\theta = \omega_f t_{\text{stop}} - \frac{\alpha_f}{2} t_{\text{stop}}^2

Substituting the values:

θ=50π3173.44120.3018(173.44)2\theta = \frac{50\pi}{3} \cdot 173.44 - \frac{1}{2} \cdot 0.3018 \cdot (173.44)^2

Calculate:

θ9081.304539.284542.01rad\theta \approx 9081.30 - 4539.28 \approx 4542.01 \, \text{rad}

Convert radians to revolutions:

Revolutions=4542.012π722.88\text{Revolutions} = \frac{4542.01}{2\pi} \approx 722.88

Thus, the flywheel will make approximately 728.3 revolutions while slowing down.