The simplification of (1−i)4 is −4 :
(1−i)4=−4
There are several solutions to simplify (1−i)4
1. Simplify manualy
(1−i)4=(1−i)2×(1−i)2
(1−i)4=(12+i2−2i)×(12+i2−2i)
(1−i)4=(12+i2−2i)2
(1−i)4=(1−1−2i)2
(1−i)4=(−2i)2
(1−i)4=(−2)2×i2
(1−i)4=4×−1
(1−i)4=−4
Thus, the simplified expression is −4.
2. Binomial theorem
To simplify (1−i)4, we can use the binomial theorem, which states that :
(a+b)n=k=0∑n(kn)an−kbk
For (1−i)4, you have:
- a=1
- b=−i
- n=4
Now, expand (1−i)4 using the binomial theorem:
(1−i)4=k=0∑4(k4)(1)4−k(−i)k
Calculate each term:
- For k=0: (04)(1)4(−i)0=1
- For k=1: (14)(1)3(−i)1=4(−i)=−4i
- For k=2: (24)(1)2(−i)2=6(i2)=6(−1)=−6
- For k=3: (34)(1)1(−i)3=4(−i3)=4(i)=4i
- For k=4: (44)(1)0(−i)4=i4=1
Now, sum all the terms:
1−4i−6+4i+1=(1−6+1)+(−4i+4i)=−4+0i
Thus, the simplified expression is −4.